31 Ağustos 2020 Pazartesi

FIT (Failure in Time) ve MTBF (Mean Time Between Failure) Kavramları

FIT ve MTBF, emniyetli elektronik sistemler üzerine çalışırken bilinmesi gereken en temel kavramlardandır.

FIT (Failure in Time) bir sistemin veya komponentin, belli bir süre içerisinde hata yapma olasılığını, hatanın frekansını ifade eder. Bu kavram ilgili cihazın güvenilirliği etkiler. Bununla birlikte emniyetli sistemler genelde bir çok cihazın birleşiminden oluştuğu için her bir sistem veya komponentin FIT değeri geniş çerçevede sistemi etkiler. Bu yüzden genellikle FIT değeri düşük sistemler emniyetli sistemlerde tercih sebebi olur.




MTBF (Mean Time Between Failure) bir sistemin veya komponentin iki hatası arasında geçen süreyi ifade eder.


FIT ile MTBF arasındaki ilişki FIT = 1 / MTBF şeklindedir. Kullanıldığı yere göre farklılık gösterir ancak temelde aynı bilgiyi ifade eder.

Bir Sistemin FIT Değerinin Bulunması

Bir sistemin FIT değerini hesaplamak için çeşitli yöntemler vardır. Bu yöntemler ilgili komponentin yapısına göre değişir.
Direnç, kondansatör gibi chip seviyesidneki elemanlarda FIT genellikle fabrika içi yapılan testlerle hesaplanır. Bu hesaba ilgili üreticinin geçmiş üretim/hata raporları da etkili olur.
Büyük sistemlerde ise FIT değeri öncelikle kullanılan alt sistemlerin hata oranlarına göre hesaplanır. Uzun vadede ilgili ürünün saha dönüş raporlarına göre FIT değeri güncellenir. Bu aşamaların tamamnıda belli bir tahmin faktörü vardır.

Örnek olarak, 10 adet komponent hata yapana kadar veya 1000 saati doldurana kadar test edilmiştir. Bu testte 6 adet ürün hata yapmıştır. Bu şartlar altında ilgili ürünün FIT hesabı aşağıdaki gibidir. İlgili ürünün her bir milyon saatteki hata oranı, FIT değeri 799'dur.


FIT değeri elbette test ortamı ile de ilgilidir. Bu noktada sıcaklık önemli ve etken faktörlerdendir. FIT değerinin sıcaklığa göre değişimini hesaplamak için belirli formüller vardır ve bunlar kullanılabilir. Burada dikkat edilecek husus hedef ürünün çalışma sıcaklığına göre FIT değeri hesaplamaktır. Örnek olarak 60°C'de çalışacak bir ürün için 30°C için verilmiş FIT değerini kullanmak hata olacaktır.

Bu yazıda FIT ve MTBF kavramları hakkında genel fikir oluşturacak kadar bilgi vermeye çalıştım. Daha kapsamlı bilgi için ve uygulamaları hakkında fikir edinmek için IEC 61508 ve benzeri emniyet standardlarını inceleyebilirsiniz.

Görsel Kayakları:

5 Ağustos 2020 Çarşamba

Emniyet Kritik Sistemler

Günlük yaşantımızda, arabalarda, fabrikalarda, büyük tesislerde, günlük hayatımızda gördüğümüz veya göremediğimiz -artık neredeyse- her yerde insanlar çeşitli sistemler ile(elektronik, mekanik, elektromekanik vb.) iç içe yaşamaktadır. Sistemlerin tamamı belli koşullar altında hata yapabilir veya hatalı kullanılabilir. Bu kapsamda hata durumunda cana, mala, tesislere veya çevreye zararı dokunabilecek sistemler emniyet kritik sistemler olarak değerlendirilir. Bu sistemlerin ürünleşmesi için geçen tüm yaşam döngüsü belli standardlar dahilinde yürütülür.

Bir sistemin emniyet kritik olup olmadığı anlamak için bir soru sormak yeterlidir. “Zarar verir mi?”. Örnek olarak bir kapı turikesinin geç açılması sadece insanı biraz sinirlendirir. Ancak bir uçağın iniş takımlarının geç açılması yüzlerce hayata, ciddi mal kaybına ve çevresel zarara sebep olur. Bu örnekte olduğu gibi “Zarar verir mi?” sorusunun cevabı “Geliştirilecek sistemin emniyetli olması gerekir mi?” sorusuna da cevap vermiş olur.


Emniyet kritik sistemler hakkında geliştirilen standardlar ilk zamanlarda birçok acı tecrübe sonucunda ortaya çıkmıştır. Bu sistemlerin ilk geliştiği sektörler havacılık, otomotiv, demiryolu gibi sivil hayatla ve insanla sürekli iç içe olan çalışma alanlarıdır. Günümüzde emniyet kritik sistem geliştirme süreçleri bu iki sektörün lokomotif etkisi ile oldukça olgunlaşmıştır. Bu sayede geliştirilen teknikler ile hataları yaşamadan evvel ilgili hataları önlemek için mühendisler çalışmalar yürütmektedir. Bahsi geçen sektörlerin kendi özelleşmiş standardları vardır. Emniyetle ilgili tüm standardların şemsiye standardı ise IEC 61508'dir.


Emniyet konusunda ISO 26262 standardı otomotiv sektörü özelinde emniyetli sistem geliştirme konusunda ürünün tüm yaşam döngüsü ile ilgili çok detaylı örnekler barındıran ve eğitim kitabı tadında içeriğe sahip bir standarddır.


Otomotiv sektöründe emniyetli sistem geliştirme süreçleri -diğer sektörlerde de olduğu gibi- V model tabanlı yürütülür. Bu kapsamda aşağıdaki model takip edilir. Donanım ve yazılım gibi çekirdek geliştirme süreçlerine girmeden önce -mümkün olan- her şey sistem seviyesinde planlanır ve tasarlanır. Örnek verecek olursak yazılım yazılmadan önce yazılım testlerinin nasıl yapılacağı planlanmış olmalıdır. Bununla birlikte sistemin emniyet seviyesine göre(Otomotivde ASIL1-ASIL4, Raylı Ulaşımda SIL1-SIL4 gibi) proje yönetim süreçleri bile değişiklik gösterebilir. Örnek olarak SIL1 seviyesindeki bir ürünün yazılımını tek bir geliştirici yapabilirken, SIL3 seviyesindeki bir ürünü iki farklı ekibin geliştirilmesi gerekebilir. Farklı seviyelerde FMEA, FTA, HARA analizleri yapılır. Riskler bu analizler sonucunda tespit edilir.


Emniyetli sistem geliştirme işi oldukça zahmetli ve maliyetli bir süreçtir. Bu yüzden ISO 26262–2:2011 Annex B Table B.1’de verildiği gibi firmaların projeden önce bu kültüre hazır olmaları veya bu kültürü geliştirmeye niyetli olmaları gerekir. Aksi taktirde proje süreçleri normal bir proje ile karşılaştırılamayacak kadar detaylı ve zahmetlidir. Emniyet kritik bir projeyi bu kural ve kıstaslara uymadan geliştirecek olursanız tüm süreç emniyet kritik ürün geliştirmeye göre 3 kat daha hızlı olabilir.

Görsel Kaynakları:
  1. https://www.instron.com.tr/tr-tr/testing-solutions/industry-solutions/automotive/safety-systems
  2. https://www.axivion.com/en/p/solutions/iso-26262-compliance-141.html



4 Ağustos 2020 Salı

IEC 61508'e göre Hata Analiz Yöntemleri

Hata analizi, genellikle düzeltici eylemleri veya yükümlülüğü belirlemek amacıyla bir hatanın nedenini belirlemek için veri toplama ve analiz etme işlemidir. Hata analizi, doğru bir şekilde yapılır ve üzerinde iyileştirmeler yapılırsa para, hayat ve kaynak tasarrufu sağlayabilir. Yeni ürünlerin geliştirilmesinde ve mevcut ürünlerin iyileştirilmesinde kullanılan, ciddi bir gereksinimdir. Hata analiz yöntemleri uygulanacağı sektöre ve uygulamaya göre çeşitlilik gösterir.

Elektronik sistemlerde emniyet ile ilgili kurallar genel olarak 61508 standardında yer alır. Emniyetli elektronik ekipmanların geliştirme sürecinde hata analiz işlemleri önemli bir yer tutmaktadır. Bu kapsamda 61508 aşağıda verilen hata analiz yöntemlerini önerir.


IEC 61508–7:2010 dokümanında B.6.6 başlığı altında kullanılabilecek hata analiz yöntemleri 10 alt başlık altında sıralanmıştır. Başlıklar altında analiz yöntemleri ile ilgili bir kaç kısa açıklama, sonrasında standardlara ve çeşitli kitaplara referanslar vardır. IEC 61508 bu konu ile ilgili sadece yönlendirme niteliğindedir. Bu 10 alt başlık;

  • B.6.6.1 Failure modes and effects analysis (FMEA)-Hata modu ve etkileri analizi
  • B.6.6.2 Cause consequence diagrams-Neden-Sonuç Diyagramları
  • B.6.6.3 Event tree analysis (ETA)-Olay ağacı analizi
  • B.6.6.4 Failure modes, effects and criticality analysis (FMECA)-Hata modu, etkileri ve kritiklik analizi
  • B.6.6.5 Fault tree analysis (FTA)-Hata ağacı analizi
  • B.6.6.6 Markov models
  • B.6.6.7 Reliability block diagrams (RBD)-Güvenilirlik blok diyagramı
  • B.6.6.8 Monte-Carlo simulation-Monte Carlo simülasyonu
  • B.6.6.9 Fault tree models-Hata ağacı modeli
  • B.6.6.10 Generalised Stochastic Petri net models (GSPN)-Genelleştirilmiş stokastik petri ağı modelleri

Gelecek yazılarda hata analiz yöntemlerinden bir kaçının detaylı açıklamasını yapacağım. Bunların başında FMEA ve FTA gelecektir.

Emniyetle kalın!


2 Ağustos 2020 Pazar

Elektronik Emniyet Sistemlerinde IEC 61508'e göre SIL Nedir?

SIL (Safety Integrity Level) sınıfı e/e/ep bir cihazın emniyet bütünlük seviyesini ifade eder. SIL ifadesi bir riskin ilk değerine görece ne kadar düşürüldüğünü ifade eder. SIL değeri arttıkça riskin gerçekleşme olasılığı düşer.


SIL seviyeleri 4 sınıfa ayrılır ve bu 4 sınıf kullanım sıklığına göre 2 ayrı değer tablosuna göre değerlendirilir. Kullanım sıklığı konusunda ise “düşük talep/rağbet”(low demand) ve “yüksek talep/rağbet(high demand) veya sürekli(continuous)” modları vardır.

Düşük talep modundaki bir emniyet fonksiyonu -uygulamanın yerine göre- çok nadir ortaya çıkacak bir olayı ifade eder. Yüksek talep veya sürekli talep ise yine -uygulamanın yerine göre- sık veya sürekli çalışacak bir emniyet fonksiyonunu ifade eder. Örnek olarak bir valfin açılıp kapanması emniyet kritik olaysa düşük talep olarak sınıflandırılabilir. Aynı hatta akan sıvı miktarının debi ölçümü emniyet kritik ise ilgili fonksiyon yüksek talep veya sürekli talep olarak sınıflandırılabilir. Bu tarz örneklerin uygulamanın yerine göre değişeceğinin tekrar altını çizmek gerekir. Başka bir uygulamada valfin açılıp kapanması yüksek talep modunda tanımlanabilir.

Düşük talep modunda sınıflandırılmış bir sistemin hata yapma oranları aşağıdaki tabloda verilmiştir. Tablodaki ortalama hata yapma olasılığı [h-1] cinsindedir. Örnek olarak SIL 1 seviyesinde bir sistemin hata yapma olasılığı 10 ile 100 saatte 1 aralığındadır. SIL 4 bir sistemin hata yapma olasılığı 10.000 ile 100.000 saatte 1 aralığındadır.


Yüksek talep veya sürekli talep modunda sınıflandırılmış bir sistemin hata yapma oranları aşağıdaki tabloda verilmiştir. Örnek olarak SIL 4 bir sistemin hata yapma olasılığı 100.000.000 ile 1.000.000.000 saatte 1 aralığındadır. Bu oran 11.415 ile 114155 yıl aralığında 1 hata olasılığına denk gelir.




1 Ağustos 2020 Cumartesi

IEC 61508 Fonksiyonel Emniyet Standardı, Bölümleri ve Kısa Açıklamaları

IEC 61508, emniyetli ilgili elektrik/elektronik/programlanabilir elektronik sistemlerde fonksiyonel emniyet uygulamalarının uluşlararası standardıdır. IEC 61508, emniyeli elektronik ekipmanların SIL sınıfını belirlemek için gereken tüm çalışma, süreçleri ve yöntemleri tanımlar. Bu standard otomotiv, raylı ulaşım, proses endüstrisi gibi bir çok alanda var olan standarda rehber niteliğinde, genel kapsamlı yapıdadır.


IEC 61508 standardı 7 bölümden oluşur. Tüm bölümler toplamda 628 sayfadır. Bu bölümler;
  1. Genel gereksinimler: Projenin yaşam döngüsünün nasıl yönetileceği ile ilgili kuralları barındırır. Proje yönetimi ve dokümantasyon konularına odaklıdır. Bu dokümanda, projeye konsept fazından başlayarak en son gerçekleştirilecek doğrulama fazına kadar tüm süreçler anlatılır. Dokümanın sonunda A ekinde örnek bir dokümantasyon yapısı verilir. 66 sayfadır.
  2. Elektrik/elektronik/programlanabilir elektronik emniyet ile ilgili sistemler için gereksinimler: Projenin emniyet ile ilgili kısmının yaşam döngüsünün nasıl yönetileceği ile ilgili kuralları barındırır. Bu dokümanın eklerinde ise emniyet koşulları ile ilgili çeşitli teknikler verilmiştir. 94 sayfadır.
  3. Yazılım gereksinimleri: Yazılım geliştirme süreçleri ile ilgili yaşam döngüsü boyunca uyulacak kuralları barındırır. Eklerde bu kuralları gerçekleştirmek için uyulacak rehberler, teknikler ve örnekler bulunur. 116 sayfadır.
  4. Tanımlamalar ve kısaltmalar: 61508 kapsamındaki tanımlamalar ve kısaltmalar listelenmiştir. 38 sayfadır.
  5. Güvenlik bütünlüğü seviyelerinin belirlenmesi için yöntem örnekleri: 50 sayfadır.
  6. IEC 61508–2 ve IEC 61508–3 uygulama yönergeleri: 116 sayfadır.
  7. Teknik ve ölçümlere genel bakış: 148 sayfadır.



IEC 61508 standartının riskler hakkındaki yaklaşımı;
  • Risk her zaman vardır. Risk hiç bir zaman sıfır olmaz. Bu standardın amacı riskin ihtimalini mümkün olan en aza indirmektir.
  • Tolere edilemez riskler azaltılmalıdır.
  • Tüm güvenlik yaşam döngüsünde ele alındığında optimum, uygun maliyetli güvenlikli sistem elde edilir.

Endüstriye Özel Standardlar

IEC 61508 genel bir standarttır ve uygulandığı endüstriye göre farklılıklar içerir. Bu farklılıklar ilgili endüstrilerin kendi standardları içerisinde verilmiştir. Bunlara örnek olarak aşağıdaki standardlar vardır.
  • Otomotivde ISO 26262
  • Raylı ulaşımda IEC 62279
  • Proseste IEC 61511
  • Nükleerde IEC 61513

Emniyetle kalın!

Yapay Sinir Ağlarının Temel Bileşeni: Nöronlar

Yapay sinir ağları (YSA), biyolojik sinir sistemlerinin çalışma prensiplerinden esinlenerek geliştirilen ve makine öğrenmesi ile derin öğren...