27 Haziran 2025 Cuma

Otomotiv Ethernet vs CAN FD: Hangisi Otomotivin Geleceği?

🚗 Otomotiv Ethernet vs CAN FD: Hangisi Otomotivin Geleceği?

Günümüzde otomotiv elektroniği baş döndürücü bir hızla gelişiyor. Otonom sürüş sistemleri, gelişmiş sürücü destek sistemleri (ADAS), yüksek çözünürlüklü kameralar, radarlar ve daha fazlası... Bu sistemlerin tümü, araç içindeki elektronik kontrol üniteleri (ECU’lar) arasında hızlı ve güvenilir veri iletişimi gerektiriyor. Peki bu veri iletişimi nasıl sağlanıyor? Karşınızda iki güçlü aday: CAN FD ve Otomotiv Ethernet.

Bu yazımızda, her iki teknolojiyi detaylıca karşılaştırıyor, avantajlarını ve zorluklarını inceliyor ve “Geleceğin iletişim protokolü hangisi olacak?” sorusuna birlikte cevap arıyoruz. 😊

Visual comparison of CAN FD bus and Automotive Ethernet data flow in a modern car network

📚 Önce Temel Kavramlar

  • CAN FD (Flexible Data-rate): Klasik CAN protokolünün geliştirilmiş versiyonudur. Daha yüksek veri hızları ve daha büyük veri yükleri taşır.
  • Otomotiv Ethernet: Bilgisayar ağlarındaki Ethernet’in otomotiv uyarlamasıdır. Özellikle yüksek bant genişliği gerektiren uygulamalar için geliştirilmiştir.

⚙️ Teknik Özellik Karşılaştırması

Özellik CAN FD Otomotiv Ethernet
Maksimum Veri Hızı 8 Mbps 100 Mbps – 1 Gbps+
Veri Çerçeve Boyutu 64 byte 1500 byte (MTU)
Topoloji Bus (dallanmış yapı) Point-to-Point veya Star
Gerçek Zamanlılık Yüksek TSN (Time Sensitive Networking) ile mümkün
Maliyet Düşük Orta-Yüksek
EMI/EMC Dayanıklılığı Yüksek Orta (ek önlemler gerekebilir)

🔌 Kullanım Senaryoları

CAN FD Ne Zaman Tercih Edilir?

  • Gövde elektroniği (body control modules)
  • Kapı kontrol sistemleri
  • Geliştirilmiş motor kontrol üniteleri
  • Gerçek zamanlılık gerektiren düşük-bant sistemler

Otomotiv Ethernet Ne Zaman Öne Çıkar?

  • ADAS (İleri Sürücü Destek Sistemleri)
  • Yüksek çözünürlüklü kamera sistemleri
  • Radar, LiDAR ve sensor fusion uygulamaları
  • Otonom sürüş kontrol üniteleri

🔍 Gerçek Hayattan Bir Örnek

Yeni nesil bir araçta kamera verileri Ethernet üzerinden taşınırken; aynı araçtaki kapı kilidi sinyalleri CAN FD üzerinden gönderilir. Çünkü birisi yüksek bant genişliği ister, diğeri ise düşük gecikmeli, güvenilir iletişim.

🏁 Gelecek Kimin?

Gelecekte bu iki teknolojinin birlikte var olması oldukça olası. CAN FD, maliyet ve dayanıklılık açısından hala birçok yerde tercih edilecek. Ancak otonom araçlar ve yüksek bant genişliği gerektiren sistemlerde Ethernet’in yeri giderek büyüyor.

💡 Hibrit Yapılar

Birçok OEM üreticisi, hibrit iletişim mimarilerine yöneliyor. Örneğin:

  • Motor kontrolü için CAN FD
  • Görüntü işleme için Ethernet
  • Gateway ECU üzerinden farklı protokoller arası geçiş

🛠️ Zorluklar

  • Ethernet için elektromanyetik uyumluluk (EMC) sorunları
  • CAN FD ile veri miktarının sınırlı olması
  • Her iki protokol için zaman senkronizasyonu gereksinimi

🧠 Sonuç

CAN FD, otomotiv dünyasında köklü bir sistem olarak kullanılmaya devam edecek. Ancak Ethernet, özellikle otomasyon, otonomi ve bağlantılı araçlarda kaçınılmaz bir gereklilik haline geliyor. Hangi protokolün kullanılacağı, uygulamanın ihtiyaçlarına göre değişiyor.

🔖 Terimler Sözlüğü

Terim Açıklama
CAN FD Flexible Data-rate: Geliştirilmiş CAN protokolü
Otomotiv Ethernet Otomotiv uyumlu Ethernet protokolü
ECU Electronic Control Unit: Elektronik kontrol ünitesi
TSN Time Sensitive Networking: Gerçek zamanlı veri aktarım tekniği

📌 Ekstra Kaynaklar

25 Haziran 2025 Çarşamba

CAN Bus Fiziksel Katmanı Nedir?

Otomotiv endüstrisinden endüstriyel otomasyona kadar pek çok alanda yaygın olarak kullanılan CAN Bus (Controller Area Network), güvenilirliği ve dayanıklılığıyla ön plana çıkar. Ancak bu protokolün arkasındaki en temel yapı taşı fiziksel katmanıdır. Bu yazıda, CAN Bus'ın fiziksel katmanını detaylı şekilde ele alacağız. 😊

Diagram showing the CAN Bus physical layer with twisted pair wiring, terminator resistors, and transceiver between microcontroller and bus lines

📚 Fiziksel Katman Neyi İfade Eder?

OSI modelinde "Fiziksel Katman" (Physical Layer), verilerin elektriksel ve fiziksel taşıma biçimidir. CAN Bus özelinde bu, veri hattının nasıl sinyal taşıdığı, hangi kabloların kullanıldığı, napaj (power supply) düzenlemeleri ve elektriksel gürültüye karşı önlemleri içerir.

📏 CAN Bus Fiziksel Katman Bileşenleri

İyi bir CAN haberleşmesi için, aşağıdaki temel bileşenlerin doğru şekilde yapılandırılması gerekir:

  • Diferansiyel Hatlar (CAN_H ve CAN_L): İletim sırasında voltaj farkı üzerinden veri taşır. Bu sayede elektromanyetik parazitlere karşı dirençlidir.
  • Transceiver (Alıcı-Verici): Mikrodenetleyici ile CAN hattı arasında köprü görevi görür.
  • 120 Ohm Sonlandırıcı Dirençler: Veri hattının her iki ucuna bağlanır. Yansıma (refleksiyon) engellenir.
  • Bükümlü Çift Kablo (Twisted Pair): Gürültüye karşı koruma sağlar.
  • Topraklama (Ground): Gerilim farklarını dengelemek için ortak referans noktasıdır.

🧪 Voltaj Seviyeleri ve Sinyal Yapısı

CAN haberleşmesinde kullanılan iki temel voltaj seviyesi şunlardır:

Durum CAN_H CAN_L Diferansiyel Voltaj (Vdiff)
Recessive (Boşta) ~2.5V ~2.5V 0V
Dominant (Aktif) ~3.5V ~1.5V ~2V

Bu diferansiyel sinyal yapısı sayesinde, CAN Bus oldukça sağlam bir iletişim sunar.

🛡️ Elektromanyetik Uyumluluk ve Koruma

CAN Bus kabloları, dış ortamda oluşabilecek elektromanyetik gürültüye karşı bükümlü çift (twisted pair) olarak döşenir. Gerekirse bu kablolar shielding (ekranlama) ile daha da korunabilir.

🔌 Kablolama Kuralları

Aşağıdaki kurallar CAN hattının sağlıklı çalışması için oldukça kritiktir:

  • Kablolama lineer (doğrusal) olmalıdır, dallanmalardan kaçınılmalıdır.
  • Hattın iki ucunda 120Ω sonlandırma mutlaka olmalıdır.
  • Toplam kablo uzunluğu 500m’yi geçmemelidir (10kbps için).
  • Bağlantı noktaları 1m’den uzun olmamalıdır.

⚙️ Hız ve Kablo Uzunluğu İlişkisi

Veri Hızı (kbps) Maksimum Kablo Uzunluğu
1000 kbps 40 m
500 kbps 100 m
250 kbps 250 m
125 kbps 500 m
50 kbps 1000 m

🔧 CAN Transceiver Seçimi

CAN transceiver’lar, mikrodenetleyiciler ile CAN hattı arasında fiziksel bağ kurar. Aşağıdaki özelliklere dikkat etmek gerekir:

  • ISO 11898-2 uyumluluğu
  • EMI performansı
  • Çalışma sıcaklık aralığı
  • Standby ve düşük güç modları

Popüler transceiver örnekleri: TJA1050, SN65HVD230, MCP2551.

❓ CAN Bus Fiziksel Katmanı Sık Sorulan Sorular

  • CAN_H ve CAN_L ters bağlanırsa ne olur? Genellikle sistem çalışmaz, ama transceiver zarar görmez.
  • Tek direnç yeterli mi? Hayır, her iki uçta 120 ohm olmalı. Aksi halde yansıma oluşur.
  • Toprak bağlantısı olmazsa ne olur? Gerilim farkları iletişimi bozabilir. Ortak ground önerilir.

🔖 Terimler Sözlüğü

Terim Açıklama
CAN_H Yüksek seviyeli CAN hattı
CAN_L Düşük seviyeli CAN hattı
Transceiver Veri alışverişini gerçekleştiren alıcı-verici devre
Diferansiyel Sinyal İki hat arasındaki voltaj farkına dayalı iletişim
Sonlandırma Direnci Veri hattı ucuna takılan 120Ω direnç

📌 Ekstra Kaynaklar

23 Haziran 2025 Pazartesi

OBD-II ve DTC Kodları Nedir? Arabaların Konuşma Dili!

🚗 OBD-II ve DTC Kodları Nedir? Arabaların Konuşma Dili!

Arabamızda bir şeylerin ters gittiğini gösteren motor arıza ışığı yandığında çoğumuzun kafasında soru işaretleri oluşur. Ne bozuldu? Pahalı bir şey mi? Acaba kullanmaya devam edebilir miyim? İşte bu sorulara cevap veren sistemin adı OBD-II (On-Board Diagnostics - Gömülü Teşhis Sistemi). Ve bu sistemin dili de DTC kodlarıdır. 😊

Car interior with OBD-II scanner connected under dashboard and diagnostic app showing error codes on phone

🔧 OBD-II Nedir?

OBD-II, 1996 yılından itibaren Amerika’da satılan tüm araçlarda zorunlu hale gelen, aracın elektronik sistemlerini denetleyen ve arızaları kayıt altına alan bir teşhis protokolüdür. Avrupa’da ise buna benzer sistemler EOBD olarak adlandırılır.

  • Motor, şanzıman, egzoz ve yakıt sistemini denetler
  • Arızaları tanımlar ve saklar
  • Servis teknisyenlerinin doğru teşhis koymasını sağlar
  • Sürücüyü uyararak güvenliği artırır

📟 OBD-II Nasıl Çalışır?

OBD-II sistemi, araç üzerindeki çeşitli sensörlerden veri toplar. Bu veriler kontrol üniteleri (ECU) tarafından analiz edilir. Eğer bir değer olması gereken aralığın dışına çıkarsa, sistem bunu bir DTC (Diagnostic Trouble Code) olarak kaydeder ve genellikle gösterge panelinde “Check Engine” ışığını yakar.

🔢 DTC Kodları Ne Anlatır?

DTC kodları, arızanın tipini ve yerini belirlemek için kullanılır. Her kod 5 karakterden oluşur:

Örnek Kod: P0301

P = Powertrain (Güç Aktarma Organları)
0 = SAE standardı (Üreticiye özgü değil)
3 = Ateşleme Sistemi
01 = 1 numaralı silindirde ateşleme hatası

Yani P0301 kodu, "1 numaralı silindirde ateşleme problemi var" anlamına gelir. Kodun ilk harfi sistem tipini gösterir:

  • P – Powertrain (motor ve şanzıman)
  • B – Body (karoser, klima vs.)
  • C – Chassis (şasi, direksiyon, fren vs.)
  • U – Network (CAN-Bus, iletişim sorunları)

🧰 En Sık Görülen DTC Kodları

Kod Açıklama
P0300 Rastgele/çoklu silindirlerde ateşleme hatası
P0420 Katalitik konvertör verimliliği düşük
P0171 Sistem çok fakir çalışıyor (bank 1)
P0455 Yakıt buhar sisteminde büyük kaçak

🔌 OBD-II Tarayıcılar Nasıl Kullanılır?

Aracınızın direksiyon altı bölgesinde bir 16 pin'lik OBD-II portu bulunur. Buraya bağlanabilen ucuz (genellikle ELM327 tabanlı) veya profesyonel cihazlarla DTC kodlarını okuyabilirsiniz.

  • Mobil uygulamalar (Torque, OBDeleven, Car Scanner)
  • Bluetooth/Wi-Fi adaptörleri
  • Servis cihazları (Launch, Autel, Bosch vs.)

📱 Akıllı Telefonla Teşhis: Uygulamalar

Bluetooth destekli OBD-II cihazınızı telefonla eşleştirdikten sonra, birçok uygulama sayesinde hem DTC kodlarını okuyabilir hem de bazı sensörleri anlık takip edebilirsiniz:

  • Torque Pro (Android)
  • OBD Fusion (iOS)
  • Car Scanner

🧠 DTC Kodunu Okuduk. Sonra Ne Olacak?

Kodun anlamını öğrendikten sonra bu kodu internetten veya araç üreticisinin servis dökümanlarından araştırabilirsiniz. Ama dikkat: bazı arızalar kendiliğinden silinmez! Kodun silinmesi için önce sorunun çözülmesi gerekir. Aksi halde motor ışığı tekrar yanacaktır.

❗ Yaygın Hatalar ve Yanılgılar

  • “Kod silinirse sorun çözülür” → Yanlış! Kod, sadece semptomdur. Kök neden çözülmeli.
  • “Tüm DTC kodları motorla ilgilidir” → Hayır! Şasi, ağ, gövde sistemleriyle ilgili olanlar da vardır.
  • “OBD-II her şeyi gösterir” → Kısmen doğru. Bazı üreticiye özel arızalar sadece orijinal cihazlarla görülebilir.

🔍 OBD-II'nin Geleceği

Günümüzde OBD-II sistemleri, sadece arıza teşhisiyle sınırlı kalmıyor. Artık uzaktan teşhis (remote diagnostics), kablosuz OTA güncellemeleri ve gerçek zamanlı araç izleme gibi fonksiyonlara entegre ediliyor. Özellikle elektrikli ve otonom araçlarla birlikte bu sistemlerin daha da gelişmesi kaçınılmaz.

🎯 Sonuç

OBD-II sistemleri ve DTC kodları, günümüz araçlarının vazgeçilmez teşhis araçlarıdır. Aracınızı daha iyi anlamak, sürüş güvenliğinizi artırmak ve gereksiz masrafların önüne geçmek için bu sistemi tanımak büyük avantaj sağlar.

🔖 Terimler Sözlüğü

Terim Anlamı
OBD-II Gömülü Teşhis Sistemi
DTC Arıza Teşhis Kodu
ECU Elektronik Kontrol Ünitesi
ELM327 OBD-II okuyucu yongası
Check Engine Motor arıza uyarı ışığı

📌 Ekstra Kaynaklar

22 Haziran 2025 Pazar

Steer-by-Wire Nedir? 🚗 Elektronik Direksiyonun Geleceği

Steer-by-Wire Nedir? 🚗 Elektronik Direksiyonun Geleceği

Otomotiv teknolojisi her geçen gün daha dijital ve daha akıllı hale geliyor. Bu dönüşümün en dikkat çekici parçalarından biri ise “Steer-by-Wire” yani elektronik kontrollü direksiyon sistemleri. Peki bu sistemler nasıl çalışır? Neden giderek daha fazla araçta tercih ediliyor? Güvenli mi, pratik mi, pahalı mı? Tüm detaylara bu yazımızda değiniyoruz.

Illustration of a modern steer-by-wire system with electronic steering wheel and actuator-based wheel control.

🧩 Steer-by-Wire Ne Demek?

Steer-by-Wire, geleneksel mekanik direksiyon sistemlerinde bulunan direksiyon mili, dişli kutusu ve bağlantı çubukları gibi mekanik bağlantıların yerini elektronik bileşenlerin aldığı bir sistemdir. Yani direksiyon simidi ile tekerlekler arasında artık fiziksel bir bağlantı bulunmaz.

Bu sistemde sürücünün direksiyonu çevirme hareketi sensörlerle algılanır, kontrol ünitesi (ECU) bu veriyi işler ve tekerleklere gerekli dönüş komutu, elektrik motorları aracılığıyla iletilir.

⚙️ Steer-by-Wire Nasıl Çalışır?

Steer-by-Wire sistemi genel olarak şu bileşenlerden oluşur:

  • Direksiyon Açısı Sensörü: Sürücünün çevirdiği direksiyon açısını ölçer.
  • ECU (Elektronik Kontrol Ünitesi): Alınan veriyi işler, gerekli komutları üretir.
  • Aktüatörler: Tekerleklerin açısını değiştiren elektrik motorlarıdır.
  • Geri Bildirim Mekanizması: Direksiyon simidine yapay kuvvet hissi verir (örneğin yol direncini hissettirme).

🛡️ Güvenlik Ne Durumda?

Direksiyon gibi kritik bir sistemin elektronikleştirilmesi doğal olarak bazı güvenlik endişelerini de beraberinde getiriyor. Ancak otomotiv sektörü, bu tür sistemlerin ISO 26262 gibi fonksiyonel güvenlik standartlarına uygun olarak tasarlanmasını zorunlu kılıyor.

Steer-by-Wire sistemlerinde yaygın olarak aşağıdaki güvenlik önlemleri alınır:

  • Çift yedekli sensörler
  • Çift işlemcili ECU’lar
  • Acil durumlarda kontrolü sürücüye veren fail-operational yapılar
  • Batarya veya enerji kesintisinde geçici mekanik kontrol opsiyonu (hibrit sistemler)

🚀 Avantajları Neler?

Steer-by-Wire sisteminin sunduğu avantajlar oldukça dikkat çekicidir:

  • Ağırlık Azalması: Fiziksel bağlantılar ortadan kalktığı için sistem hafifler.
  • Daha Az Yer Kaplama: Direksiyon miline ihtiyaç kalmadığı için tasarım esnekliği artar.
  • Kişiselleştirilebilir Sürüş: Direksiyon sertliği, dönüş açısı gibi parametreler yazılımla ayarlanabilir.
  • Otonom Sürüş Uyumlu: Elektronik sistem, otonom sürüş algoritmalarına kolayca entegre edilebilir.

🔧 Dezavantajları da Var mı?

Elbette. Her teknolojide olduğu gibi Steer-by-Wire sistemlerinin de bazı dezavantajları mevcut:

  • Maliyet: Gelişmiş elektronik bileşenler nedeniyle ilk yatırım maliyeti yüksektir.
  • Algısal Güven: Sürücüler fiziksel bağlantı olmayışını ilk etapta garipseyebilir.
  • Enerji Bağımlılığı: Sistemin düzgün çalışması için sürekli elektrik beslemesi gerekir.

🔄 Geleneksel Direksiyon ile Farkları

Özellik Geleneksel Direksiyon Steer-by-Wire
Fiziksel Bağlantı Var Yok
Geri Bildirim Doğal, mekanik Yapay (force feedback)
Yedeklilik Genelde yok Elektronik yedeklilik
Tasarım Özgürlüğü Kısıtlı Yüksek

📈 Gelecekte Nerelerde Kullanılacak?

Şu anda Steer-by-Wire sistemleri çoğunlukla premium segmentte veya elektrikli araçlarda karşımıza çıkıyor. Ancak teknolojinin yaygınlaşmasıyla birlikte aşağıdaki alanlarda daha fazla görmemiz bekleniyor:

  • Otonom Araçlar
  • Ağır vasıtalar (otobüs, kamyon)
  • Tarım ve inşaat araçları

🛠️ Hangi Markalar Kullanıyor?

Steer-by-Wire sistemlerini uygulayan bazı öncü üreticiler:

  • Infiniti: Q50 modelinde Direct Adaptive Steering teknolojisi
  • Tesla: Cybertruck için yoke-style steer-by-wire planı
  • Nissan: Otonom test araçlarında yaygın kullanım

🧠 Yazılım ve Kalibrasyonun Rolü

Steer-by-Wire sistemlerinde yazılım; sürücü geri bildirimi, dönüş sertliği, direksiyon davranışı gibi pek çok unsuru belirler. Bu nedenle yazılım kalibrasyonu hem güvenlik hem sürüş keyfi açısından kritik rol oynar.

Yapay zeka destekli sistemlerde, sürücünün sürüş stiline göre adaptif davranışlar bile mümkün hale gelmektedir.

🔮 Sonuç: Direksiyonun Geleceği Burada mı?

Steer-by-Wire sistemleri otomotiv endüstrisinin dijitalleşmesinin önemli bir parçası. Hem otonom sürüşe hazırlık, hem de kullanıcı deneyimini artırmak açısından ciddi potansiyel taşıyor.

Ancak yaygınlaşması için hem maliyetlerin düşmesi hem de kullanıcı güveninin artması gerekiyor. Önümüzdeki yıllarda bu sistemin daha fazla modelde karşımıza çıkması oldukça muhtemel. 🚘

🔖 Terimler Sözlüğü

Terim Açıklama
ECU Electronic Control Unit, kontrol birimi
Aktüatör Elektriksel komutla mekanik hareket üreten bileşen
Force Feedback Geri bildirim için uygulanan yapay direnç hissi
ISO 26262 Otomotiv için fonksiyonel güvenlik standardı

📌 Ekstra Kaynaklar

Otomobillerin Dili: CAN Bus Protokolü Nedir?

🚗 Otomobillerin Dili: CAN Bus Protokolü Nedir?

Modern otomobiller, sadece motor ve direksiyon gibi mekanik bileşenlerden ibaret değil. Aracınızda onlarca elektronik kontrol ünitesi (ECU) bulunur. Bu üniteler birbiriyle sürekli veri alışverişi yapar: Hız bilgisi, fren durumu, motor sıcaklığı, hava yastığı tetik durumu... Hepsi anlık olarak paylaşılır.

Peki tüm bu iletişim nasıl oluyor?
Cevap: CAN Bus (Controller Area Network) protokolü!

Bu yazıda, otomotiv dünyasında en yaygın kullanılan veri haberleşme protokolü olan CAN Bus’un ne olduğunu, nasıl çalıştığını, hangi alanlarda kullanıldığını ve örnek veri yapısını öğreneceksiniz. Teknik terimleri sadeleştirerek, anlaşılır bir dille aktarıyoruz 😊

Car systems connected through CAN Bus showing data flow between ECUs and dashboard controls.

🧭 CAN Bus Nedir?

CAN (Controller Area Network), Bosch firması tarafından 1980’lerde geliştirilen, araç içi elektronik sistemlerin birbiriyle hızlı ve güvenli haberleşmesini sağlayan bir protokoldür.

CAN Bus, çoklu cihazların (multi-master) birbirini beklemeden haberleşmesine olanak tanır. Tek bir veri yolu (bus) üzerinde tüm kontrol üniteleri konuşabilir.

🧩 Temel Özellikleri

ÖzellikAçıklama
Veri YönüÇift yönlü (multi-master)
Veri Hızı10 kbps - 1 Mbps (standart CAN), 5 Mbps (CAN FD)
Fiziksel KatmanDiferansiyel sinyal (CAN_H - CAN_L)
Veri Formatı11-bit veya 29-bit ID + veri (max 8 byte / CAN FD ile 64 byte)
Hata KontrolCRC, ACK, Bit stuffing

🧠 Nasıl Çalışır?

CAN Bus, çok noktaya yayın (broadcast) mantığıyla çalışır. Bir cihaz (örneğin fren sistemi) bir mesaj yayınladığında, veri yoluna bağlı tüm diğer cihazlar bu mesajı alır.

CAN Mesaj Yapısı (Standart Format):

| Başlık (ID) | Kontrol | Veri | CRC | ACK | End |
  • ID: Mesajın kimliği (öncelik içerir)
  • Veri: 0–8 byte (CAN FD ile 64 byte)
  • CRC: Hata kontrol kodu
  • ACK: Onay biti (alıcılar tarafından set edilir)

Örnek:

  • ID: 0x120 → Motor Devir Bilgisi
  • Veri: 0x0F 0xA0 → 4000 RPM
  • ACK: Başarılı iletim

🚘 Nerelerde Kullanılır?

CAN Bus sadece otomobillerde değil, birçok alanda kullanılır:

  • Otomobiller (ABS, ECU, ESP, Klima)
  • Tarım makineleri
  • Raylı sistemler
  • Sanayi otomasyonu
  • Elektrikli bisikletler ve scooter’lar
  • Tıbbi cihazlar

⚖️ CAN Bus ile ARINC 429 Karşılaştırması

ÖzellikCAN BusARINC 429
YönÇift yönlüTek yönlü
Master tipiMulti-masterPoint-to-point
Veri Uzunluğu8-64 byte32 bit sabit
Hata TespitiCRC + ACKParity biti
Kullanım AlanıOtomotivHavacılık

🔄 Arbitration: Kim Önce Konuşur?

CAN Bus sisteminde aynı anda iki cihaz konuşmak isterse, önceliği daha yüksek olan ID kazanır. Bu işleme arbitration (çekişme çözümü) denir.

Örnek: 0x100 (düşük ID) ve 0x3F0 (yüksek ID) aynı anda veri göndermek ister. 0x100 kazanan olur çünkü daha “önemli” sayılır.

🧪 Gerçek Hayat Senaryosu

Fren pedalına bastığınızda şu olur:

  1. Fren sensörü 0x300 ID’li bir mesaj yayınlar: “Pedala basıldı”
  2. ESP, ABS, Motor ve Gösterge Paneli bu mesajı alır.
  3. ESP freni optimize eder, gösterge paneli uyarı verir.

Tek mesaj, çoklu tepki. CAN Bus’ın en büyük avantajı budur!

🧰 Donanım Tarafı

  • CAN_H ve CAN_L olmak üzere iki telli diferansiyel yapı
  • Her iki uçta 120Ω sonlandırma direnci
  • Transceiver örnekleri: MCP2551, TJA1040

🛠️ Geliştiriciler İçin

CAN Bus ile çalışmak isteyenler için bazı öneriler:

  • Arduino + MCP2515 modülü
  • STM32 microcontroller + HAL kütüphaneleri
  • PCAN-USB dongle ile analiz
  • CANoe veya SavvyCAN yazılımları

🎯 Sonuç

CAN Bus, otomotiv sektörünün haline gelmiştir. Hızlıdır, güvenlidir, yaygındır. Bir otomobilin kalbinde hangi verilerin aktığını anlamak için CAN Bus’u anlamak şart.

Bir mühendis, tekniker ya da meraklı biriyseniz, CAN Bus öğrenmek size otomotiv sistemlerinin işleyişini anlamada büyük bir pencere açacaktır.

🔖 Terimler Sözlüğü

TerimAnlamı
IDMesaj kimliği ve önceliği
CRCVeri bütünlüğü kontrolü
ACKMesajın alındığını onaylayan bit
ArbitrationÇekişme çözümü, öncelik sırası
Multi-masterBirden fazla cihazın veri gönderebilmesi

📌 Ekstra Kaynaklar

🎨 Görsel Önerisi

Prompt (Görsel üretimi için):
"A modern car dashboard showing interconnected ECUs via CAN Bus, with data flowing in lines between components like ABS, engine, and infotainment systems. Realistic horizontal digital illustration."

Alt Text:
Car systems connected through CAN Bus showing data flow between ECUs and dashboard controls.

21 Haziran 2025 Cumartesi

Gökyüzünde Konuşan Sistemler: ARINC 429 Protokolü Nedir? (Temel Anlatım ve Örneklerle)

✈️ Gökyüzünde Konuşan Sistemler: ARINC 429 Protokolü Nedir?

Havacılık sektörü, veri güvenliği ve tutarlılığı açısından en hassas endüstrilerden biridir. Uçakta yüzlerce sistem aynı anda çalışır; pilotun önündeki ekranlardan uçuş kontrol yüzeylerine kadar her şey, dakik hesaplamalar ve kesin bilgi akışıyla işler.

Peki, bu sistemler birbiriyle nasıl haberleşiyor?
Cevap: ARINC 429 protokolü!

Bu yazıda, ARINC 429’un ne olduğunu, nasıl çalıştığını, nerelerde kullanıldığını ve örnek veri formatlarını sade bir dille anlatacağız. Havacılığa meraklı biri ya da bu alana giriş yapmak isteyen biri için temel bir ARINC 429 rehberi olacak 😊

Cockpit view showing ARINC 429 data flow from aircraft sensors to cockpit instruments and flight recorder

🧭 ARINC 429 Nedir?

ARINC (Aeronautical Radio, Incorporated) 429, uçak içindeki elektronik sistemlerin birbiriyle veri alışverişi yapmasını sağlayan, bir yönlü (unidirectional), seri haberleşme protokolüdür.

“O zaman USB kablosu gibi bir şey mi?”
Aslında benziyor ama çok daha güvenli, sağlam ve havacılık şartlarına özel tasarlanmış bir sistemdir.

🧩 Temel Özellikleri

ÖzellikAçıklama
Veri YönüTek yönlü (1 gönderici ➝ 1 veya daha fazla alıcı)
Veri Hızı12.5 kbps veya 100 kbps (yaygın olan 100 kbps)
Fiziksel KatmanDiferansiyel sinyal (RS-422 tabanlı)
Veri FormatıHer veri 32 bittir
Bağlantı TipiPoint-to-point veya Multi-drop

🧠 Nasıl Çalışır?

ARINC 429'da her veri iletimi 32 bitlik kelimeler (word) halinde yapılır. Her bir kelime belirli alanlara ayrılmıştır.

📦 ARINC 429 Veri Yapısı

| 31   | 30-29 | 28-27 | 26-11              | 10-9 | 8-1    | 0     |
| Parity | SSM | SDI | Veri (Data) | RT | Label | Parity |
AlanBit NoAçıklama
Label1-8Hangi verinin gönderildiğini belirten etiket (ör: hız, irtifa)
SDI9-10Kanal seçici (opsiyonel)
Data11-29Asıl veri kısmı (ör: 300 knots)
SSM30-31Verinin durumu (normal, hata, geçersiz vb.)
Parity32Veri doğrulama biti (tek sayıda 1 için)

Örnek:

  • Label: 203 → Hava Hızı
  • Data: 300 knots
  • SSM: 00 → Normal veri
  • Parity: 1 → Hataları tespit etmek için

✈️ Nerelerde Kullanılır?

ARINC 429, özellikle sabit kanatlı uçaklarda (örneğin Airbus, Boeing) kullanılır. Aşağıdaki sistemlerde yaygın olarak görülür:

  • Uçuş yönetim sistemleri (FMS)
  • Otomatik pilot
  • Navigasyon cihazları (IRS, GPS)
  • Hız sensörleri (Pitot tüpleri)
  • Işık sistemleri
  • Uçuş veri kaydedicileri (black box)

🔄 Neden Tek Yönlü?

ARINC 429’un tek yönlü olması, karmaşayı azaltır ve güvenliği artırır.

Sistem şöyle işler:

  • Veriyi sadece bir cihaz gönderir.
  • Birden fazla cihaz aynı veriyi dinleyebilir.

Örnek: “Hava hızı 300 knots” bilgisi bir sensörden çıkar, aynı anda otopilot, ekranlar ve black box bu veriyi alır.

🧪 Senaryo ile Açıklama

Hayal edin:

  • Uçakta bir hava hızı sensörü var.
  • Bu sensör, ARINC 429 üzerinden veri gönderiyor.
  • 3 sistem bu veriyi dinliyor: Otomatik pilot, ekranlar, kara kutu

Gönderilen veri:

  • Label: 203
  • Data: 300 knots
  • SSM: 00
  • Parity: 1

Hiçbir sistem cevap vermez, sadece veri alır.

⚙️ Diğer Protokollerle Karşılaştırma

ÖzellikARINC 429CAN BusRS-485
Veri YönüTek yönlüÇift yönlüÇift yönlü
Kullanım AlanıHavacılıkOtomotiv, endüstriEndüstri
Veri Formatı32-bit sabitDeğişkenEsnek
Hata TespitiParity bitiCRC + ACKGenelde yok
KararlılıkÇok yüksekOrtaDüşük-Orta

🔒 Neden Hâlâ Kullanılıyor?

  • Stabil ve test edilmiş sistem
  • Deterministik yapı (önceden öngörülebilirlik)
  • Basit mimari
  • Geriye dönük uyumluluk

Yeni nesil uçaklarda ARINC 664 (AFDX) gibi sistemler gelse de ARINC 429 hâlâ güvenilir bir standardır.

🧰 Donanım Tarafı

  • Diferansiyel sinyal (RS-422 uyumlu)
  • 2 kablo yeterlidir
  • Örnek entegre: Holt HI-3593

🧪 Simülasyon ve Hobi Seviyesi Uygulamalar

  • ARINC 429 USB dongle
  • Arduino ile temel sinyal üretimi
  • Simulink ile blok bazlı modelleme

🎯 Sonuç

ARINC 429 öğrenmeye değer mi? Kesinlikle evet!

Özellikle havacılıkta çalışmak isteyen mühendisler için vazgeçilmez bir altyapıdır. Sadeliği sayesinde öğrenmesi kolay, uygulaması güçlüdür.

🔖 Terimler Sözlüğü

TerimAnlamı
LabelVeriyi tanımlayan numara
SSMVerinin geçerlilik durumu
ParityHata kontrol biti
TransmitterVeri gönderen cihaz
ReceiverVeriyi alan cihaz

📌 Ekstra Kaynaklar

  • Holt Integrated Circuits
  • ARINC 429 PDF dokümanı (Google üzerinden erişebilirsiniz)
  • GitHub’da ARINC 429 simülasyon projeleri

9 Haziran 2025 Pazartesi

C Dilinde Moving Average Filter (Hareketli Ortalama Filtresi) Nedir, Nasıl Uygulanır?

Hareketli Ortalama Filtresi (Moving Average Filter), sinyal işleme ve veri analizi alanlarında en çok tercih edilen basit ve etkili filtrelerden biridir. Gürültülü verilerin pürüzsüzleştirilmesi, ani değişimlerin yumuşatılması ve sensör okumalarının stabilize edilmesi gibi birçok uygulama alanında kullanılır. Özellikle gömülü sistemlerde, mikrodenetleyicilerde ve gerçek zamanlı uygulamalarda, C dili ile kolayca uygulanabilir olması sayesinde oldukça popülerdir.

Hareketli Ortalama Filtresi Nedir?

Kısaca, hareketli ortalama filtresi, belirli bir pencere (örneğin N örnek) içerisindeki verilerin aritmetik ortalamasını alarak yeni bir çıktı üretir. Böylece, kısa süreli gürültüler ve ani değişimler filtrelenmiş olur.

Matematiksel olarak:
Y[n] = (X[n] + X[n-1] + ... + X[n-(N-1)]) / N
Burada:

  • Y[n]: Filtrelenmiş çıktı

  • X[n]: En yeni giriş değeri

  • N: Pencere boyutu (window size)


Avantajları ve Dezavantajları

Avantajlar:

  • Basit ve hızlı algoritma

  • Bellek ve işlemci gereksinimi düşük

  • Gerçek zamanlı uygulamalara uygun

Dezavantajlar:

  • Ani değişimleri geciktirir (faz kayması)

  • Büyük pencerelerde tepki yavaştır

  • Herkese uyan tek boyutlu çözüm değildir; pencere boyutu dikkatle seçilmelidir


C Dilinde Moving Average Filter Nasıl Uygulanır?

Aşağıda, hareketli ortalama filtresinin C dilinde farklı şekillerde uygulanışı anlatılmaktadır.

1. Temel Uygulama: Döngüyle Ortalama Alma

Kullanımı:

Eksisi:

Her yeni örnekte tüm pencereyi toplar, bu da işlemciyi yorar.


2. Kayan Pencere ile Optimizasyon (Dairesel Buffer Kullanımı)

Dairesel (circular) buffer ve kayan toplam yaklaşımıyla işlem yükü azaltılabilir.

Kullanımı:

Avantajı:

  • Her örnek için sadece iki toplama/çıkarma işlemi gerekir.

  • Özellikle gömülü sistemlerde çok daha hızlıdır.


3. Uygulama Alanları

  • Sensör verilerinin düzeltilmesi (ör. sıcaklık, ivmeölçer)

  • Finansal zaman serilerinde veri yumuşatma

  • Gürültülü sinyal filtreleme (ör. ADC verisi)

  • Otomotivde, tıbbi cihazlarda, endüstriyel kontrol sistemlerinde


Pencere Boyutu (Window Size) Nasıl Seçilmeli?

  • Küçük pencere (örn. 3–5): Ani değişimlere daha duyarlı, az gecikme.

  • Büyük pencere (örn. 20–50): Daha yumuşak sonuç, daha fazla gecikme.

Kullanım amacınıza ve verinizin doğasına göre pencere boyutunu dikkatli seçmelisiniz.


Kodun Tamamı: Basit Moving Average Filter Kütüphanesi

Sonuç

Hareketli ortalama filtresi, basitliği ve etkililiğiyle öne çıkan bir filtreleme yöntemidir. C dilinde uygulanması da oldukça kolaydır. Kodunuzu ve pencere boyutunuzu ihtiyacınıza göre optimize ederek, birçok gerçek zamanlı uygulamada başarılı sonuçlar elde edebilirsiniz.

Sen de uygulaman için yukarıdaki örnekleri kolayca entegre edebilirsin!

Otomotiv Ethernet vs CAN FD: Hangisi Otomotivin Geleceği?

🚗 Otomotiv Ethernet vs CAN FD: Hangisi Otomotivin Geleceği? Günümüzde otomotiv elektroniği baş döndürücü bir hızla gelişiyor. Otonom sürü...